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Previously, we found that distinct brain areas predict individual selection bias in decisions between small
immediate (“Now”) and larger delayed rewards (“Later”). Furthermore, such selection bias can be
manipulated by endogenous opioid blockade. To test whether blocking endogenous opioids with naltrexone
(NTX) alters brain activity during decision-making in areas predicting individual bias, we compared fMRI
BOLD signal correlated with Now versus Later decision-making after acute administration of NTX (50 mg) or
placebo. We tested abstinent alcoholics and control subjects in a double-blind two-session design. We
defined regions of interest (ROIs) centered on activation peaks predicting Now versus Later selection bias.
NTX administration significantly increased BOLD signal during decision-making in the right lateral orbital
gyrus ROI, an area where enhanced activity during decision-making predicts Later bias. Exploratory analyses
identified additional loci where BOLD signal during decision-making was enhanced (left orbitofrontal cortex,
left inferior temporal gyrus, and cerebellum) or reduced (right superior temporal pole) by NTX. Additional
analyses identified sites, including the right lateral orbital gyrus, in which NTX effects on BOLD signal
predicted NTX effects on selection bias. These data agree with opioid receptor expression in human frontal
and temporal cortices, and suggest possible mechanisms of NTX's therapeutic effects.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

The non-selective opioid antagonist naltrexone (NTX) is one of the
few drugs with U.S. Food and Drug Administration (FDA) approval for
the treatment of alcoholism. NTX is also used to treat other substance
addictions and impulse-control disorders. NTX reduces ethanol con-
sumption in subjects with a history of alcohol abuse (Anton et al., 1999;
Davidson et al., 1999; Heidbreder, 2005; Hernandez-Avila et al., 2006;
O'Brien et al., 1996), and in animals trained to self-administer ethanol
(Boyle et al.,1998; Stromberg et al., 1998). Moreover, NTX reduces drug-
seeking behavior triggered by drug-cue exposure in animal models
(Ciccocioppo et al., 2003, 2002; Liu and Weiss, 2002) and alcohol-cue
induced craving in human alcoholics (Monti et al., 1999; O'Malley et al.,
2002; Rohsenow et al., 2000). However, the mechanisms of these
clinically important actions of NTX are notwell understood. NTX has the
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highest affinity for μ-opioid receptors, but substantial affinity for κ- and
δ-opioid receptors (Kreek, 1996). Through its modulation of the
endogenous opioids that control midbrain dopaminergic neurons, NTX
alters forebrain release of dopamine (DA) (Herz, 1995; Margolis et al.,
2006; Spanagel et al., 1992). Through blocking opioid disinhibition of
ventral tegmental area (VTA) neurons, NTX reduces ethanol-induced
release ofDA in thenucleus accumbens (Altshuler et al.,1980;Harris and
Erickson, 1979), which contributes to the motivation to consume
alcohol. Based on this neurobiological action of NTX, candidate
mechanisms for its therapeutic action in alcoholics include an attenua-
tion of the rewarding effects of alcohol, for which there is experimental
support (Sinclair, 2001; Swift et al., 1994; Volpicelli et al., 1995). There is
also evidence that NTX can increase the aversive effects of ethanol
(Davidson et al.,1999; deWit et al.,1999;McCaul et al., 2000;Mitchell et
al., 2009). However, NTX can also significantly reduce alcohol craving in
alcoholics during abstinence (Monti et al., 1999; O'Malley et al., 2002;
Rohsenow et al., 2000), and attenuate thoughts and behaviors
associated with drinking (Anton et al., 1999). Thus, NTX may act, in
part, via alteration of specific cognitive processes. One possibility that
has received experimental support is that NTX reduces the tendency to
choose impulsively (Kieres et al., 2004;Mitchell et al., 2007; O'Malley et
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al., 2002). In fact, NTX relieves a wide variety of impulse-control
disorders (Grant, 2005; Kim et al., 2001;Marrazzi et al., 1995; Raymond
et al., 2002; Symonset al., 2004). These data all suggest that endogenous
opioids promote impulsivity, and that blocking endogenous opioid
activity with NTX reduces impulsiveness.

To address whether NTX alters brain activity in regions known to
predict individual bias toward immediate rewards, we used a NTX
challenge in the context of functional magnetic resonance imaging
(fMRI) while human subjects performed a modified delay discounting
(DD) task. In a previous fMRI study of this task (Boettiger et al., 2007),
we found that distinct brain areas predict individual selection bias.
These areas include the dorsal prefrontal cortex, the posterior parietal
cortex, the orbitofrontal cortex (OFC), the parahippocampal gyrus
adjacent to the amygdala, the posterior cerebellum, and the inferior
and middle temporal gyri. The task is comprised of numerous trials in
which subjects are instructed to choose between two amounts of
money, a smaller amount available “Now” (e.g. “$80 TODAY”) or a
larger amount available “Later” (e.g. “$100 in 1 Month”; Fig. 1). We
have quantified individual selection bias in this task as an “Impulsive
Choice Ratio” (ICR) (Mitchell et al., 2005). In a previous pharmacology
study, we found that such selection bias can be manipulated by
endogenous opioid blockade (Mitchell et al., 2007). To test the
hypothesis that blocking endogenous opioid signaling with NTX
would alter regional brain activity that predicts individual selection
bias during decision-making, we compared the fMRI BOLD signal
correlated with Now versus Later decision-making after acute
administration of NTX (50 mg) or placebo. Subjects were either
abstinent alcoholics or control subjects with no history of substance
abuse, and they were tested in a double-blind randomized two-
session crossover design.

For the purpose of analyzing brain activity between sessions, we
defined regions of interest (ROIs) as 10 mm spheres centered on
activation peaks that predict Now versus Later selection bias (Boettiger
et al., 2007), comparing the BOLD signal during decision-making within
these ROIs between NTX and placebo sessions. We also conducted
exploratorymapwise analyses to identify other brain areas inwhichBOLD
Fig. 1. Illustration of behavioral paradigm. The temporal sequence of events is depicted
for an example WANT trial. Illumination of a fixation cross (“Ready”) indicated the start
of each trial. The instruction cue (in this case “WANT”) was then displayed for 4.4 s,
informing the subject as to the upcoming trial type. The two options (Now and Later)
then appeared while the instruction cue remained on the screen. The specific dollar
amounts (from $1 to $100) and the time of availability (from “Today” to “6 months”
later) varied across trials, as did the differences between the two options. The options
remained on the screen for 4.4 s, although subjects had 6.6 s to indicate their choice.
signal during decision-making was enhanced or reduced by NTX
administration. Finally, given the widespread evidence for variability in
NTX response,we conducted additional analyses to identify sites inwhich
NTX effects on BOLD signal predicted NTX effects on selection bias.

NTX is not effective in treating all alcoholics, thus, determining the
moderators of NTX's effects is a critical goal of current research.
Investigation of genetic moderators of NTX's effects has largely
focused on the A118G (ASP40) variant of the μ-opioid receptor gene
(OPRM1). This OPRM1 variant produces a µ-opioid receptor with
greater affinity for β-endorphin (Bond et al., 1998), suggesting a gain-
of-function effect. However, more recent data indicate that the ASP40
variant impairs transcription and thus expression of the receptor
protein, resulting in a loss-of-function effect (Zhang et al., 2005).
Laboratory studies demonstrate that this OPRM1 variant determines
NTX's effect on physiological responses to alcohol-cue exposure
(McGeary et al., 2006) and to alcohol-induced high (Ray and
Hutchison, 2007). Moreover, clinical trials have yielded data demon-
strating that the ASP40 variant predicts therapeutic response to NTX
(Anton et al., 2008; Oslin et al., 2003); although, other studies have
failed to replicate this finding (Gelernter et al., 2007). Thus, we also
collected genetic material from these subjects to test whether the
A118G variant of the OPRM1 gene also modulates NTX effects on
immediate reward bias or underlying neural circuit activity. In
addition to the A118G variant of the OPRM1 gene, we also tested
several other single nucleotide polymorphisms (SNPs) that have been
associated in other studies with addiction and/or impulsivity.

2. Methods

2.1. Participants

Participants were either abstinent alcoholics (AA; n=9) or control
subjectswith nohistory of substance abuse (CS; n=10). All participants
were healthy, right-handed volunteers (8 females; mean age: 28.3±
5.8), and were paid for their participation. Participants were screened
forpsychoactive druguse (Biotechnostix, Inc.), includingalcohol (Lifeloc
Technologies, Inc.) at the start of each session. Five additional
participants were tested, but were excluded from fMRI analyses due to
excess headmotion or equipment failure. All subjects had at least a high
school education, and the two groups did not differ in terms of
socioeconomic status, age, IQ, or years of education. Alcohol addiction
severity (prior to sobriety for AA group) was assessed via the Alcohol
Use Disorders Identification Test (AUDIT; (Saunders et al., 1993)), with
mean AUDIT scores of 19±7 and 5±2, for the AA and CS groups,
respectively (scores ≥8 indicate problem drinking). AA subjects self-
reported a minimum of 2 weeks sobriety at the time of recruitment
(mean sobriety=2.5 years). All participants gave written, informed
consent, in accordancewith theguidelines of theUniversityofCalifornia,
Berkeley Committee for the Protection of Human Subjects. Subject
payment was not dependent upon choice behavior in the task.

2.2. Experimental paradigm

Each subject completed two sessions separated byaminimumof 48h.
At the start of each session, subjects gave written, informed consent and
after completing screening for contraindications for NTX, subjects were
administered either a 50mg NTX capsule or an identical placebo capsule.
Experimenter and subject were blind to capsule content; capsule order
was counter-balanced across subjects. Three hours after pill ingestion,
subjects performed a delay discounting task in the context of an fMRI
scanning session. For the task, subjects made a series of choices between
Nowand Laterhypotheticalmonetary rewards. Later amountswere $2, $5,
$10, $20, or $100, at 1 of 5 future delays: 1 WEEK, 2 WEEKS, 1 MONTH,
3 MONTHS, or 6 MONTHS. The Now option was always a lesser amount
available TODAY. Now and Later options randomly appeared on the right
or left side. Subjects were given task instructions and a brief practice
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session to familiarize themwith the DD task. Subjects performed the DD
task within an fMRI scanner, while we collected continuous whole-brain
bold oxygen level dependent (BOLD) signal. Scanning comprised 8
functional scans of 37 trials each (32 choice trials, and 5 “null” trials); trial
type order was pseudorandom and unique for each subject (total
scanning duration ~1 h). For each trial, subjects were shown a cue that
indicated how to select between the two subsequently displayed
hypothetical reward options, each option was a dollar amount available
at a point in time (Fig. 1); these two alternatives are considered as “Now”

and “Later”. TheNow optionwas available “TODAY” and was the lesser of
the two amounts by a percentage randomly selected from the set: {30%,
15%, 10%, 5%}. Right-left position of each option was randomized across
trials. Subjects indicated their choice by pressing a button on an MRI-
compatible keypad. Instruction cues included:WANT (W), DON'T WANT
(DW), SOONER, and LARGER, the latter two cues are considered together
as “CONTROL” (CON). In the W condition, subjects chose their preferred
option. In the DW condition, subjects were asked to make the same
evaluation and press the button corresponding to the opposite choice. On
CON trials, subjects selected the option reflecting either the sooner time
point or larger amount of money, depending on the instruction cue. CON
trial performance verified subject comprehension and compliance with
task instructions. TheDWconditionprovides a gross assessment ofmotor
impulsiveness, by comparing inferred choices in the DW trials as a
functionof timewith choices in theWcondition as a functionof time. This
comparison rules out spurious impulsive choice as a result of unintended
motor responses. Trial types frequencieswereweightedwith ratios of 1/2
for the W condition and 1/6 each for each of the other conditions. The
order of inter-trial intervals was fixed across subjects. As the choice
condition followed the cue condition at a fixed delay for each trial, “null”
trials were included in each run (5 trials per run); in these trials, the
instruction cue appeared and no options followed. Subjects saw each of
the 120 possible choices two or three times, although not necessarily in
the same trial type context. All choices made in the task were based on
hypothetical rewards, although subjects were instructed to choose as if
they would actually receive their choices.

2.3. Analysis of behavioral data

Single factor between-group comparisons were made via unpaired t-
tests.Withingroupcomparisonsof conditionweremadeviapaired t-tests.
All t-tests were 2-tailed and were conducted using Excel or SPSS. Multi-
factorial comparisonsweremadeusingmixed repeated-measuresANOVA
in SPSS, with group as a between subjects factor. Where sphericity
assumptions were violated, a Greenhouse–Geisser non-sphericity correc-
tionwasapplied. Foreach subject,we calculatedan ImpulsiveChoiceRatio
(ICR), which is the proportion of Now choices relative to all W condition
choices made. Reward preference in DW trials was inferred to be the
unselected option. From these DW responses, we calculated an inferred
ICR (iICR) for each delay time and took the sum of |ICR−iICR| across all
delays as a gross index ofmotor error. To ensure the validity of parametric
statistical tests,weusedanarcsine-root transformationof ICRdataprior to
statistical comparisons.

2.4. Imaging

T2⁎-weighted images (EPI)were acquired on a 4T Varian Inovawhole
body magnetic resonance scanner (Palo Alto, CA) equipped with a TEM
send-receive radio frequency (RF) head coil, using a 1-shot gradient echo
EPI sequence (TR=2200ms, TE=28ms,flip angle=20°) to detect BOLD
contrast. The sequence employedphasemap correction to reduceNyquist
ghosts. To facilitate coverage of the ventral/orbital PFC, sampling of k-
spacewas in the order positive to negative (De Panfilis and Schwarzbauer,
2005). 40 coronal slices (3.5mmthickwith0.5mmgap)per volumewere
obtained (FOV=22.4×22.4, in-plane resolution=3.5 mm). Each fMRI
acquisitionwas preceded by 22 s of dummygradient RF pulses to achieve
steady-state tissue magnetization and minimize startle-induced motion.
Low-resolution T1-weighted co-planar images were acquired for each
participant. In addition, a magnetization-prepared fast low-angle shot
high-resolution (MPFLASH) T1-weighted image was acquired for the
purposes of normalizing data to standardized space. E-Prime software
(PST, Inc., Pittsburg, PA) synchronized the stimulus display with the fMRI
acquisition and collected subject responses via an MRI-compatible
keypad. An LCD projector (Epson, Long Beach, CA) projected stimuli
onto a rear projection screen (Stewart, Torrance, CA), which the subjects
viewed via a mirror mounted within the head coil.

2.5. Image analysis

fMRI data were processed offline with a combination of in-house
software, SPM2 (Wellcome Dept. of Imaging Neuroscience, London,
UK), and the Artifact Detection Tools package (http://web.mit.edu/
swg/software.htm). Images were first reconstructed into Cartesian
space, and sinc interpolated in time to correct for timing differences in
slice acquisition. Data were next motion corrected using a six-
parameter, rigid-body, least-squares algorithm (Friston et al., 1995),
realigning all volumes to the first EPI volume, then smoothed with a
7mm full-width half-maximum (FWHM) Gaussian smoothing kernel.
Each subject's co-planar and MPFLASH anatomical images were co-
registered to the first EPI volume, and then normalized to Montreal
Neurological Institute (MNI) space and resampled to 2 mm3 isotropic
voxels. The functional data were analyzed in an event-related manner
based on the modified general linear model as implemented in the
statistical package SPM2. Each subject's model included a design
matrix of regressors of interest, which were δ functions positioned at
the onset time of each experimental event type (ready; instruction
cue; choice pair) convolved with a canonical hemodynamic response
function (HRF). Noise spikes were rarely detected in the data
(ArtRepair2 Toolbox); these were modeled as covariates of no interest
with duration of 2.2 s and were not convolved with an HRF. Data were
high-pass filtered using a cut-off of 128 s, and serial autocorrelations
were corrected with a restricted maximum likelihood algorithm using
a second-order autoregressive model (AR2+white noise).

For each subject, linear contrast images were calculated from the
regressor parameter estimates; contrast images were then normalized
into MNI space using the parameters derived from the co-registered
MPFLASH. Contrast maps were smoothed resulting in a total smooth-
ing kernal of 10 mm FWHM. To test whether naltrexone (NTX) would
alter brain activity during subjective decision-making, we compared
the mean contrast values of (WANT–CON) from the NTX and placebo
(PBO) sessions within predefined ROIs from both NTX and PBO
sessions. ROIswere 10mm3 spheres centered on coordinates identified
in a previous study (Boettiger et al., 2007).We also subtractedNTX and
PBO session contrasts to assess mapwise drug effects; the subtracted
contrasts were then subject to both simple regression and one-sample
t-test analyses, as implemented in the SnPM3 analysis package
(http://www.sph.umich.edu/ni-stat/SnPM/). To control for multiple
comparisons, statistical non-parametric maps are corrected for Type I
error (αb0.001; whole-brain volume), determined by random
permutation of the NTX-PBO subjective decision-making contrast
parameter estimates (with either ICR change or subject) in 5000 new
analyses (Nichols and Hayasaka, 2003; Nichols and Holmes, 2002).
Activation peaks were localized within defined anatomical regions,
identified from the T1-weighted anatomical images obtained from
each subject, with reference to standard brain atlases (Duvernoy et al.,
1991; Schmahmann et al., 1999; Tzourio-Mazoyer et al., 2002).

2.6. Genetic analysis

DNA extraction and analysis was conducted according to standard
methods on samples obtained from subjects providing informed consent.
The Ernest Gallo Clinic and Research Center Genomics Core carried out
genotyping of the following polymorphisms with polymerase chain
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Table 1
Subject demographics.

Participants AA (n=9) CS (n=10) t17 p value

General
Age (years) 30±8 27±3 1.49 ns
Education (Hollingshead subscore) 6±1 6±1 1.77 ns
Hollingshead SES 51±9 50±2 0.34 ns
Shipley Institute of Living Scale (raw) 65±8 72±8 1.70 ns
Gender (# female) 5 3 ns†

Ethnicity (# non-white) 2 1 ns†

Alcohol-related
AUDIT 19±7 5±2 6.30 b0.001
DUSI-I (%) 75±15 13±18 8.06 b0.001
FTQ (#) 3±2 1±1 2.99 b0.01

Values are reported as mean±standard deviation. Reported p values reflect the results of
unpaired two-tailed comparison between groups. AA, abstinent alcoholic; CS, control
subject; SES, socioeconomic status; AUDIT, AlcoholUseDisorders IdentificationTest; DUSI-I,
Drug Use Screening Inventory, Domain I; FTQ, Family Tree Questionnaire; †p value
represents results of χ2 test. ns: pN0.05.

Table 2
NTX effects on behavior.

Participants AA (n=9) CS (n=10) All (n=19)

Reaction time changes (%)
CON −6±9 8±10 1±12
W −5±15 3±14 −1±15
DW −4±16 3±17 0±16

ICR changes (%) 5±14 3±14 4±14

Changes in reaction times and ICR in the delay discounting task following 50 mg
naltrexone (NTX), relative to the placebo session. AA, abstinent alcoholic; CS, control
subject; W, WANT trials; DW, DON'T WANT trials; CON, control trials (SOONER and
LARGER); ICR, Impulsive Choice Ratio. All data given as mean±standard deviation.

Table 3
Peak coordinates for ROI analyses.

Brain region Hemisphere MNI coordinates [x, y, z] (mm)

Now ROI centers
Supramarginal gyrus (parietal lobe) Right 66, −42, 44
Cerebellum, posterior lobe (lobule VIII) Right 36, −52, −62
Middle temporal gyrus Right 56, −52, −2
Inferior temporal gyrus Right 68, −50, −12
Parahippocampal gyrus (gyrus ambiens,
entorhinal area, semilunar gyrus)

Right 18, −4, −28

Superior frontal gyrus Left −22, 50, 44

Later ROI center
Lateral orbital gyrus Right 58, 36, −10

ROI anatomical region, hemisphere, and coordinates of ROI center based on the Montreal
Neurological Institute (MNI) coordinate system value are given.
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reaction using TaqMan® technology (Applied Biosystems): adrenergic
alpha-2A-receptor (ADRA2A; rs1800544), ankyrin repeat and kinase
domain containing 1 (ANKK1/DRD2 Taq I; rs1800497), brain-derived
neurotrophic factor (BDNF; rs6265), cathechol-O-methyltransferase
(COMT; rs4680), dopamine D2 receptor (DRD2; rs6277), dopamine D4
receptor (DRD4; rs1800955), kappa-opioid receptor (OPRK1; rs1051660),
mu-opioid receptor (OPRM1; rs1799971), and tryptophan hydroxylase 1
(TPH1; rs1800532).

To estimatewhich genotypes had the greatest predictive value for the
NTX effects on ICR and ROI activity, linear multiple regression analyses
were carried out using SPSS. For each multiple regression analysis, we
entered genotypes stepwise, divided into five blocks. The blocks were as
follows: block 1—OPRM1; block 2—OPRK1; block 3— COMT, DRD2 TaqI,
DRD2_7a, DRD4; block 4 — ADRA2, TPH1; block 5 — BDNF.

3. Results

3.1. Sample characteristics

The AA and CS groups were matched in terms of demographic
variables. Specifically, the groups did not differ in terms of education
level, age, SES, IQ, gender composition, or ethnic composition
(Table 1). However, as expected, the AA subjects reported significantly
higher levels of alcohol abuse and alcohol-related problems (Table 1).
A family history of alcohol abuse was also more common among the
AA group (Table 1).

3.2. NTX effects on behavior

Replicating our previous finding (Mitchell et al., 2007), a mixed
design repeated-measures ANOVA found no significant main effect of
drug (F1,17=1.07, p=0.341) or group (F1,17=0.01, p=0.941) on RTs,
although, as expected, we did observe a significant effect of trial type
(F1,24=49.1, pb0.001) (Table 2). This latter effect reflected increasing
RTs from the CON to WANT to DW trial types. We also found no
significant drug×group interaction effect on RT (F1,17=2.14,
p=0.161).

A mixed design repeated-measures ANOVA considering ICR as the
dependent variable found a significant main effect of group
(F1,17=10.11, pb0.001), but not of NTX (F1,17=1.22, p=0.286) on
ICR. Replicating our previous results (Boettiger et al., 2007; Mitchell
et al., 2005, 2007), the group effect was due to significantly higher
ICRs among the AA group relative to the CS group. We also found
no significant drug×group interaction effect on ICR (F1,17=0.48,
p=0.496).
3.3. NTX effects on brain activity during subjective preference decisions

In a previous fMRI study, we found that during decisions between
small, immediate (“Now”) versus larger, delayed (“Later”) rewards the
magnitude of the fMRI BOLD signal scales with individual immediate
reward bias in several brain areas (Boettiger et al., 2007). Here we first
tested whether acute NTX administration alters brain activity during
subjective decision-making in these areas. We then conducted an
exploratory analysis to identify other areas in the brain in which
activity during decision-making is significantly altered. Finally, across
the whole brain, we tested for correlations between NTX's effect on
brain activity during Now versus Later decision-making and its effect
on choice behavior.

3.3.1. Effects within choice-predicting ROIs
For the ROI analyses, we defined the ROIs as 10 mm3 spheres

centered on the coordinates identified in our previous study
(Boettiger et al., 2007). These areas each predict individual immediate
reward selection bias during Now versus Later decision-making. These
areas can be divided according to those in which activity during such
decisions is directly correlated with Now bias (“Now areas”) and one
in which activity during such decisions is inversely correlated with
Now bias (“Later” area). For each ROI, the mean parameter estimates
(β values) for a subjective decision-making contrast (WANT–CON)
were extracted from both the NTX and the placebo sessions and then
subject to further statistical analyses.

3.3.1.1. “Now” areas. To test for significant effects of NTX on BOLD
activity during decision-making in Now ROIs, we conducted paired t-
tests with ROI β values as dependent variables. For the three ROIs that
were the focus of our previous study (posterior parietal cortex, superior
frontal gyrus, and parahippocampal gyrus), we did not observe a
significant effect of NTX on brain activity during subjective decision-
making (t18, minimum p value=0.548). We observed similar effects in
additional areas in the temporal lobe and cerebellum (see Table 3), in



Fig. 3. Genotype at the BDNF 66 locus predicts NTX effect on ICR. Ratio of impulsive
choices as a function of genotype and drug condition. Therewas a significant interaction
effect between drug condition and genotype at the BDNF 66 locus on impulsive choice
probability. The 66Met/Met genotype was associated with greater Now bias on NTX. Met/
Met, 66Met/Met; Val/Met, 66Val/Met; Val/Val, 66Val/Val; BDNF, brain-derived neurotrophic
factor.
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which activity during Now versus Later decisions is also known to
correlate with Now bias (t18, minimum p value=0.489). These results
indicate that any effect that NTX may have on temporal discounting
behavior is not mediated by actions in any of these brain areas.

3.3.1.2. “Later” area. We next tested for a significant effect of NTX on
BOLD activity during decision-making in the Later ROI in the OFC, again
using a paired t-test with ROI β values as dependent variables. Here we
observed that during NTX sessions, brain activity during subjective deci-
sion-making was significantly elevated (Fig. 2; t18, p=0.045). Together
with our previous finding that activity in the OFC duringNow versus Later
decisions inversely correlates withNow bias, this result suggests that NTX
may reduce impulsive decision-making via effects on the OFC.

3.3.1.3. Group interaction with NTX effects on ROI. Atwo-way factorial
ANOVA with ROI β values as dependent variables failed to identify a
significant group×drug interaction for any of the Now or Later ROIs
(maximum F1,17=1.44, p=0.256). These findings suggest that NTX does
not exert differential brain effects based on alcohol use history in areas
that predict Now versus Later bias.

3.3.1.4. Genotype interaction with NTX effects
3.3.1.4.1. Effects on choice behavior. Multiple linear regression

analysiswas used to determinewhether any of the SNPswe assayed had
significant predictive value in terms of the NTX effect on ICR. We found
that a single SNPhad significantpredictive power: theVal66Met locus of
BDNF (r=0.52, t15=−2.27, p=0.04). That is, electing Nowmore often
during the NTX sessionwas associated with fewer Val alleles at position
66 in the BDNF protein. No other genotype factor added into the model
added significantly more predictive power than BDNF genotype alone
for the NTX effect on ICR. A two-way factorial ANOVA with ICR as
dependent variable confirmed a significant interaction between drug
condition and BDNF genotype (F1,13=3.99, p=0.045; Fig. 3). Therewas
no significantmain effect of BDNF genotype on choice behavior (pN0.8).

3.3.1.4.2. Effects on brain activity during subjective choice. We
performed an identicalmultiple linear regression analysis using the OFC
ROI β values as the dependent variable to test whether any of the tested
genotypes held significant predictive value for NTX's effect. This
procedure found that none of the SNPs tested significantly predicted
the NTX effect on OFC activity during Now versus Later choices.

3.3.2. Mapwise analysis of NTX effects

3.3.2.1. Sites in which NTX raised or lowered activity. In addition to
our ROI-based analyses, we conducted an exploratorymapwise analysis
of NTX's effect on BOLD signal during subjective decision-making. We
Fig. 2. NTX significantly elevates activity during decision-making in the OFC. Plot of the
mean Now versus Later subjective decision-making parameter estimates for the OFC
ROI as a function of drug condition. Plots reflect mean±S.D. NTX, naltrexone; PBO,
placebo.
found that NTX elevated activity during Now versus Later decisions in
the left OFC, the left inferotemporal cortex, and bilateral sites in the
cerebellum (Fig. 4A). In addition, we found that NTX depressed activity
duringNow versus Later decision-making in the right superior temporal
gyrus (Fig. 4B). See Table 4 for peak coordinates.

3.3.2.2. Correlation between NTX effects on brain and on behavior.
Our final analysis employed simple regression analysis to identify brain
areas in which NTX's effects on decision-making activity predicted NTX's
effect on behavior. To accomplish this, we entered the choice condition
drug contrasts (NTX–PBO) from each subject into a mapwise simple
regression analysis. This correlation analysis exploited the intersubject
variability in NTX behavioral effects to identify differences in NTX effects
on the BOLD signal duringNow versus Later choices. Using the ICR change
of each subject as a between subjects statistical regressor, we found a
significant positive correlation between ICR change and session difference
in activity during preference-based decision-making in a constellation of
areas (Table 5). Notably, one such sitewas in the right lateral OFC (Fig. 5A;
Table 5), falling within the OFC ROI investigated above. As can be seen in
the regression plot of Fig. 5B, the NTX effect on OFC activity during Now
versus Later decisionswas inversely correlatedwith the NTXeffect on ICR.
In other words, elevated OFC activity on NTX was associated with an
increased likelihood of selecting the larger, delayed reward (Fig. 5B).

4. Discussion

4.1. NTX modulation of OFC function

Determining the functional effects of NTX on the human brain is an
important step in understanding the bases for variability in its efficacy.
This information may not only help predict whether an individual will
respond toNTX, itmayalsohelp identifywhichofNTX's actions are critical
to its therapeutic effect. This latter information may prove especially
valuable indriving thedevelopmentof newtreatments for alcoholismand
related disorders, as it could suggest which brain regions are critical
therapeutic targets and thushelp guide or validate animal experiments. To
date, this study is only the second published report about the effects of
NTX in the brains of peoplewith a history of alcohol dependence. Herewe
found that among areas that predict individual bias towards immediate
rewards, a single areawasmodulatedbyNTXduringdecision-making: the
OFC. Interestingly, the other recent study found that NTX modulates OFC
responses to alcohol cues in alcohol dependent subjects (Myrick et al.,
2008). Together these findings highlight the OFC as a key brain area
affected by NTX.



Fig. 4. Mapwise analyses of NTX effects. Statistical non-parametric t-maps contrasting
[WANT–CON] activity in NTX and placebo sessions, overlaid on a standard T1-weighted
anatomical image. Criterion threshold was based on permutation-based voxelwise
correction of FWE (pb0.001), with a minimum cluster size of 5 contiguous voxels.
A) Areas more active during subjective decision-making on NTX. B) The indicated area
in the superior temporal gyrus was less active during subjective decision-making on
NTX. Cr1, cerebellum crus 1; Cr2, cerebellum crus 2; 7b, cerebellum lobule 7b; IT,
inferotemporal cortex; OFC, orbitofrontal cortex; STG, superior temporal gyrus.

Table 4
Peak coordinates for sites of activity modulation by NTX.

Brain region Hemisphere MNI coordinates [x, y, z] (mm)

NTX increased activity during decision-making
Lateral orbital gyrus Left −40, 46, −11
Inferior temporal gyrus Left −37, 0, −41
Cerebellum, crus I Left −37, −42, −35
Cerebellum, lobule VIIb Left −44, −42, −49
Cerebellum, crus I Right 45, −46, −35
Cerebellum, crus II Left −20, −76, −45

NTX decreased activity during decision-making
Superior temporal gyrus Right 63, 10, −8

Anatomical region, hemisphere, and peak coordinates based on theMontreal Neurological
Institute (MNI) coordinate system value are given.
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The OFC is thought to play a critical role in moderating impulsive
choice (Mobini et al., 2002; Rudebeck et al., 2006), and in representing
subjective value during choice tasks (Izquierdo et al., 2004; Padoa-
Schioppa and Assad, 2006; Roesch and Olson, 2004; Schoenbaum and
Roesch, 2005). OFC damage impairs the ability of animals to change their
responses to stimuli that are no longer reinforced (Dias et al., 1996;
McAlonan and Brown, 2003; Mishkin, 1964; Ostlund and Balleine, 2007;
SchoenbaumandRoesch, 2005; Schoenbaumet al., 2007; Tait and Brown,
2007). Likewise, patients with damage to the OFC, due either to focal
lesions (Rolls et al., 1994) or to degenerative frontotemporal dementia
(Rahman et al., 1999), also show impairment in changing their responses
when the “rules” for correct responding change. Human neuroimaging
studies also support a role for the OFC in overcoming learned response
contingencies (Boettiger et al., 2004; Cools et al., 2002; Elliott et al., 2000;
O'Doherty et al., 2004; Remijnse et al., 2006).

Such inability to refrain from previously preferred actions in response
to formerly rewarding cues that are no longer reinforced is highly
reminiscent of the transition from flexible to habitual responding that is
characteristic of drug addiction. It should come as no surprise then, that
neuroimaging studies have repeatedly foundabnormalOFC functioning in
substance abusers (Boettiger et al., 2007; Dom et al., 2005; Ersche et al.,
2005; London et al., 2000; Volkow and Fowler, 2000). The present data
suggest that NTX may support the long-term decision-making critical to
recovery from alcoholism by increasing activity in the OFC. Determining
whether this biomarker is an addiction vulnerability or relapse risk factor
is an important future question.

4.2. Immediate reward bias and endogenous opioids

These data are consistent with our previous finding that blockade
of endogenous opioids with NTX can alter immediate reward bias and
Table 5
Peak coordinates for sites in which NTX co-modulated BOLD and ICR.

Brain region Hemisphere MNI coordinates [x, y, z] (mm)

NTX BOLD effect inversely related to ICR effect
Middle frontal gyrus Right 40, 46, 6
Lateral orbital gyrus Right 51, 38, −16
Superior temporal pole Left −47, 12, −14
Middle temporal pole Left −27, 9, −37
Inferior frontal junction Right 45, 8, 28
Inferior temporal gyrus Right 50, 4, −38
Middle temporal gyrus Left −54, 2, −22
Supplementary motor area Right 15, 1, 72
Cerebellum, lobule VI Right 36, −43, −32

Right 32, −64, −21
NTX BOLD effect directly related to ICR effect
Middle orbital gyrus Left −20, 57, −14
Inferior temporal gyrus Left −59, −9, −29
Middle temporal gyrus Left −68, −38, 5
Intraparietal sulcus Left −44, −45, 61

Anatomical region, hemisphere, and peak coordinates based on theMontreal Neurological
Institute (MNI) coordinate system value are given.



Fig. 5. NTX effect on the OFC predicts NTX effect on choice behavior. Statistical non-
parametric t-maps depicting results of a mapwise simple regression analysis. A) A site
in the OFC is shown in which NTX's effect on activity during decision-making
significantly correlated with NTX's effect on choice behavior. B) Plot of each subject's
NTX session change in Now versus Later subjective decision-making parameter
estimate as a function of change in ICR for the peak of the region displayed in B;
peak regression statistic displayed in plot. Units are in standard deviations, mean=0.
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that this effect is highly variable across individuals (Mitchell et al.,
2007). The present results provide new data regarding possible
neurobiological sources for this variability. First, we found that a
common polymorphism in the BDNF gene predicted individual NTX
effect on immediate reward bias. Second, we identified brain regions
in which the difference in activity during Now versus Later decisions
between NTX and placebo sessions predicted changes in choice
behavior. These areas included the right lateral OFC, an area in which
high activity during Now versus Later decisions predicts Later reward
selection bias. Consistent with this finding, here we show an
association of NTX elevated OFC activity with reduced selection of
immediate rewards. The two primary targets of NTX, µ-opioid
receptors and κ-opioid receptors, are both expressed at high levels
in the OFC (Gorelick et al., 2005; Staley et al., 1997; Zubieta et al., 1999,
1996), thus NTX may be directly mediating its effects on OFC activity
via local receptors. However, many of the OFC's inputs, including the
dorsal prefrontal cortex, temporal cortex, the amygdala, and the VTA,
also show rich expression of opioid receptors (Gorelick et al., 2005;
Maurer et al., 1983; Staley et al., 1997; Zubieta et al., 1999, 1996), thus
NTX's effect on OFC activity may alternatively be mediated indirectly
through one or more of these areas. For example, opioid agonists
directly inhibit cortically projecting VTA dopamine neurons in rats
(Margolis et al., 2006), thus NTX's actions at opioid receptors in the
VTA could increase dopaminergic input to the OFC, resulting in the
heightened OFC activity during decision-making that we observed.
However, we do not currently know how endogenous opioids that
affect the release of DA alter the BOLD signal in the human OFC. Rat
studies indicate that whereas µ-opioids in the VTA increase cortical
and striatal DA, κ-opioids inhibit striatal dopamine, since NTX blocks
both receptors, its effect on cortical DA levels is uncertain (Herz, 1995;
Margolis et al., 2006; Spanagel et al., 1992) and could depend on the
relative level of µ- versus κ-mediated actions. Relative µ- versus κ-
effects would be expected to differ in subjects with low circulating
levels of endogenous µ-receptor ligands, such as alcoholics and their
off-spring (Dai et al., 2005; del Arbol et al., 1995; Govoni et al., 1983;
Vescovi et al., 1992), or in those with low levels of µ-receptor
expression, as is found in subjects with low frontal DA levels due to
their COMT genotype (Berthele et al., 2005), and in subjects with the
A118G polymorphism of the µ-opioid receptor (Zhang et al., 2005).
Combining PET imaging of NTX binding with behavioral studies of
immediate reward bias shifts may shed light on this issue.

Clinical and pre-clinical data support the hypothesis that opioids
regulate immediate reward bias. In rats, NTX reverses morphine
induced immediate reward bias (Kieres et al., 2004). In humans, NTX
shifts preference from immediate alcohol reward to delayed
monetary reward in a lab bar setting (O'Malley et al., 2002).
Moreover, NTX attenuates a variety of impulsive behaviors, including
pathological gambling (Kim et al., 2001), binge eating in bulimics
(Marrazzi et al., 1995), compulsive sexual behavior (Raymond et al.,
2002), self-injurious behavior (Symons et al., 2004), and kleptoma-
nia (Grant, 2005). Together these results suggest that opioids
promote impulsivity, and that opioid receptor blockade via NTX
may improve self-control. The fact that immediate reward bias is
reduced by acute elevation of DA levels (de Wit et al., 2002; Wade et
al., 2000), further suggests that NTXmay alter immediate reward bias
via indirect effects on DA release, an idea consistent with studies
demonstrating opioid regulation of dopamine neurons (Berthele et
al., 2005; Margolis et al., 2006; Ostrowski et al., 1982; Sesack and
Pickel, 1992).

4.3. BDNF and the endogenous opioid system

The Met allele of the BDNF Val66Met polymorphism is associated
with reduced activity-dependent release of BDNF, impaired episodic
memory, and reduced Hippocampal function (Egan et al., 2003). It has
also been associated with increased anxiety (Chen et al., 2006),
increased risk of eating disorders and schizophrenia, and reduced risk
of substance abuse disorders (Gratacos et al., 2008). Although
endogenous opioids are known to regulate BDNF expression (Zhang
et al., 2007; Zhang et al., 2006), it remains unclear how variation in the
BDNF system could alter response to endogenous opioid blockade.
One recent study however indicates that genetic variability in the
BDNF gene alters response to methadone treatment in opioid addicts
(de Cid et al., 2008), providing some precedence for variability in
opioid system responses based on BNDF genotype.

4.4. Limitations

4.4.1. Sample size
One limitation of the results reported here is the small sample size.

This limitation is particularly critical for interpreting the genetic
association data. Thus, the finding that BDNF genotype predicts NTX
effects on impulsive decision-making should be considered as pilot data,
which await confirmation in a larger scale study. It is also critical to
acknowledge that our small sample size may have resulted in false
negativeswith regard to themoderating effects of the other SNPs tested.

4.4.2. Acute dose of NTX
A second limitation of the present study is the use of a single acute

dose of NTX. Typical therapeutic use of NTX entails daily dosing, which
may result in rather different responses to the drug. However, clinical
data demonstrate equivalent or greater efficacy of acute NTX dosing,
relative to daily maintenance, in reducing excessive alcohol intake
(Hernandez-Avila et al., 2006).
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4.4.3. No clinical outcome measures
A final limitation of the present study is the lack of any clinical

outcomemeasures. Thus, we are unable to say whether the NTX effects
on decision-making behavior or on brain activity during decision-
making are directly correlated with NTX's therapeutic effects. Future
studies that incorporate this decision-making task into a clinical trial
would shed light on this issue.

4.5. Summary

The present findings identify actions of NTX in the human brain that
may contribute to its therapeutic effect in the treatment of alcoholism.
Moreover, OFC activity during subjective decisions may be a key
therapeutic target for alcoholism medication development. Individual
differences in NTX effects on the OFC may contribute to the variable
clinical efficacy of NTX. Individual differences in BDNF genotype may
also contribute to the variability in NTX's effects on behavior.
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